
Phenix Timing System

Stephen Adlera

a Brookhaven National Laboratory

Abstract

This technical note describes how to configure a Granule Timing Module
(GTM) using a configuration text file.

1 Generating raw mode bit data file

A mode bit language has been developed in order to ease the task of generating mode
bit data files which are used to load into the Grandual Timing Modules. The idea is
to write an ascii text file using this mode bit language syntax, run a program called
MBParce which will then translate the mode bit source code into a raw mode bit file.
The GTM’s will then load the data in this raw mode bit file into the various memory
banks and registers of the grandual timing module.

So one needs to learn this mode bit lanuage in order to “program” the GTM. This
is a very simple, but rather cryptic language which one often needs to resort to an
example file to remember how it works. Further, in order to understand it, and why
its cryptic form, one needs to understand how a GTM works and its internals.

2 How a GTM works

A GTM is a rather complicated pulse generator. Its designed to provide timing pulse
sequences to virtually any device you can think of which will operate in the RHIC
accelorator environment. What this means is that the RHIC operates by injecting 120
bunches of particles into each of the two counter rotating rings which make up the
RHIC accelorator. These two sets of 120 bunches will then generate 120 possible times
during one circulation period, that a collision may occure. Thus, the GTM has been
designed such that one can generate pulse sequences in sets of 120 cycles, which are
repeated over and over again, to match the particular beam conditions for each one of
the 120 bunches in the ring.

This leads one into the following design philosophy of the GTM. The GTM is made
up of two memory sections. The first one is called the schedualar mode bit memory,
and the second one is called the schedualr command memory. What one does is load
the mode bit sequences into the mode bit memory, and the number of times each one
of these sequences is to repeat into the command memory. One could think of the
memories as being data memory and program memory. The GTM program is loaded
into the command memory (program memory) and the mode bits them selves, (the
mode bit data), gets loaded into the mode bit memory (the data memory.) Finally,
the GTM has a sequencer. (i.e. a CPU) What this sequencer does is to read memory
location 0 of the command memory, (which contains the number of time to loop over
one of the mode bit patterns) and “execute” that command which means to loop
over the mode bits N number of times. It then reads the next memory location in
the command memory and executes that command. This process repeats until the
sequencer executes a command which includes a reset. This means that after looping
through the mode bit pattern N times, it will go back to memory location 0 and start
the process over again. Thus the GTM will loop over the commands in the command
memory, which will cause the sequencer to loop over the mode bits. So the GTM loops
and loops and loops over a huge phase space of mode bit sequences.

The syntax of the mode bit language is designed to mimick this looping processes.
Basically their are two sections to a mode bit “program”. The first one details the data

1

which will be loaded into the mode bit memory, and the second one are the commands
which are loaded into the command memory.

2.1 Mode bit data section

The mode bit data sections is defined by the following syntax:
LABEL: label

FEM:

mode bit data sequence

LL1:

mode bit data sequence

PPG:

mode bit data sequence

DUMP:

The text in bold is required by the syntax.
The mode bit data sequence is a string which details the mode bit data which will be
generated for one 120 count loop. The syntax of this string is as follows:
n[;m][xo][,]

where n, m, are hex numbers and o is a decimal number. A string of hex numbers
seperated by the “;” character indicates a repeat sequence. A string of hex numbers
seperated by “,” is just a regular sequence. A repeat sequence or a hex number can
be repated o by use of the “x” operator. The following is a list of examples which will
clarify the syntax.

Example1:
00x120

Expands to 120 values of 0.

Example2:
10x60,20x60

Expands to 60 values of hex 10, and 60 values of hex 20.

Example3:
1,2,3,4,5,6x115

Expands to 1, 2, 3, 4, 5 followed by 6 repeated 115 times.

Example4:
1;2x60

Expands to 60 repeated sequences of 1, 2. (i.e. 1,2,1,2,1,2,...,1,2).

The string after the LABEL: tag identifies the mode bit command section. This string
is called the mode bit command tag. One can include as many different mode bit
command sections in the “GTM program” but each is identified by a unique mode bit
command tag.

The labels of FEM:, LL1: and PPG: preceeding a mode bit data sequence string
indicates to which system the mode bit data sequence is for. FEM: indicates that the
mode bits will be delivered to the Front End Module. LL1: indicates that the mode

2

bits specified by the mode bit data sequence will go to the Local Level 1 system, and
PPG: means that the mode bits are destined for the programmable pulse generator.

Finally, the DUMP: string terminates the mode bit data sequence block. You can
start another mode bit data sequence by using the LABEL: tag or begin the command
section block which is described next.

2.2 Mode bit command section

The mode bit command section is defined by the following syntax: START:
sequencer command

sequencer command

sequencer command

The text in bold is required. This means that you need to have at least one sequencer
command line. The sytax for the sequencer command line is:
LABEL[xI][;break][;reset]

Where LABEL is a mode bit command tag, i is a hex number between 1 and 0x800000.
The string ;break indicates the end of the initialization sequence, and the string
;reset indicates the end of the continous sequence. The idea being that several mode
bit command blocks are executed once after the GTM sequencer is started, and then a
second set of mode bit command blocks is executed in order indefinatly. The xI string
indicates that the mode bit command block is to be executed I times. The following
set of examples will clarify the syntax.

Example: 3 mode bit command blocks have been defined labeled A, B and
C.

START:

A;BREAK

Bx10

Cx20;RESET

The above sequencer command section will direct the sequencer to execute
the A mode bit command block once, execute the B mode bit command
block hex 0x10 times, execute the C mode bit command block hex 0x20
times, then go back to the line after the ;BREAK statement.

Example: 4 mode bit command blocks have been defined labeled M, N, and
O.

START:

Mx10

Nx20;BREAK

O;RESET

3

The above sequencer command block will direct the sequencer to execute the M

mode bit command block hex 0x10 times, then execute the N mode bit command block
hex 0x20 times, and execute the O command block an indefinate number of times. (i.e.
the sequencer will loop indefinatly executing the O mode bit command block.)

This concludes the documentation for the GTM mode bit language. What follows
are a couple of complete examples of mode bit programs.

Example: The following mode bit program is written for the Drift Cham-
ber FEM. It executes the mode bit reset command once (0x02) and then
executes the run mode bit command indefinatly.

LABEL: A

FEM:

00x119,02

DUMP:

LABEL: B

FEM:

10x120

DUMP:

START:

A;BREAK

B;RESET

Example: The following mode bit program is used by the Pad Chamber
to execute the test strobing sequence. The mode bit commands of 0xF7
and 0xF4 will force an internal strobe of a cirtain number of Pad Chamber
ROC’s. 51 clock cycles later the PPG issues a TTL pulse which is feed
into the GTM forcing a level accept into the PC FEM which causes it to
readout the “internally strobed” data.

LABEL: A # Mode bit data block which issues a strobe followed by

level one accept issued by the PPG.

FEM:

10x4,12x2,10x18,f7x10,f4x10,10x76

PPG:

00x95,01,00x24 # toggle bit 1 of ppg 51 clock ticks after the Strobe.

DUMP: # dump out the mode bits

LABEL: B # Mode bit data block B

FEM:

10x120 # 120 values of 0x10, the run mode bit command.

DUMP: #dump out the mode bits.

4

START: # Start of schedular code

A # execute mode bits labled A once

Bx400;RESET # execute mode bits labled B 0x400 times, this delays

the next strobe for 0x400 times 120x10Mhz clock.

(i.e. about 12 ms or 81 Hz)

3 GTM raw data file format

For completness sake, the GTM raw data file format will be described. The format of
this file follows closley the address space of the GTM which can be viewed in Figure 1.

The GTM raw data file is an ascii file composed of a list of hex numbers. See Figure
2 and ignore the text to the right of the 8 digit hex numbers since they are there to
help decode the file format. The first number in the file is the number of words to
follow (XWC) which are to be written into the Scheduler mode bit address space. The
Schedular mode bit data should follow, again a sequence of ascii hex numbers seperated
by a line feed. Next is the number of words to be loaded into the Schedualr command
address spaced, followed by the data to be loaded into this space. Finally, 8 words
terminate the file which are loaded into six consecutive registers in the register address
space plus two more bit fields in other parts of the GTM register space. The definition
of these registers can be found in table 1. The example in Figure 2 is technically correct,
but some what meaning less since technically, one should have at least 128 words of
schedular mode bit data to write into the first block of mode bit data memory. But
putting 128 words into the example in Figure 2 would make the figure itself rather
ugly.

GTM Auxillary Register # Description

1 FEM Count N Dead Time, Calculated by MBParce
2 FEM Convert Time
3 FEM Enable Data Time
4 GTM Clock find delay adjust
5 GTM clock course delay adjust
6 GTM rough delay adjust
7 GTM Count N Dead Time
8 GTM Level 1 Delay Clock Count

Table 1: Definition of GTM loadable register space

Finally, what follows is a set of sample Mode bit program files along with the
generated output which is read in by the GTM software.

Filename Description
GTM.DC.E Sample DC FEM mode bit file.
GTM.DC.E.gtm Output of MBParce on the above file
MBParce.cc Source to MBParce

5

Figure 1: GTM Address
space.

00000008 <-- XWC

00000000 ------

00000001 |

00000002 D

00000003 A

00000004 T

00000005 A

00000006 |

00000007 ------

00000001 <-- XWC

00000001 <-- Data

00000010 ------

00000011 |

00000012 |

00000013 reg

00000014 data

00000015 |

00000016 |

00000017 ------

Figure 2: Sample raw data
file. See text for further de-
tails.

6

3.1 MBParce details

The following is how you build the program:
Sun

cc -o MBParce -D__SunOS_5_6 MBParce.c}

Linux and Irix

cc -o MBParce MBParce.c

To execute the command and generate a raw GTM data file, type the following.

./MBParce GTMProgramFileName > GTMRawDataFilename

Note, if you are using an old version of the GTM hardware, then you need to add a
’-old’ qualifier to the command as such:

./MBParce -old GTMProgramFileName > GTMRawDataFilename

Contact Steve Adler in case you are unsure which version of the GTM you have.

3.2 The vxWorks GTM software

To load the software in vxWorks, type at the vxWorks prompt shell:

ld < libGTMTools.o

To run the gtm software type gtm at the vxWorks prompt. You will be presented
with a menu of commands which are slected by typing in the menu item number at
the prompt.

4 Transcriber’s note

Steve Adler’s original documentation on the GTM was posted at:
http://ssadler.phy.bnl.gov/adler/phenix/timing/TimingSystem.html

which was taken down some time after his departure.
A copy of the page was posted by John Haggerty at:

http://www.phenix.bnl.gov/phenix/project info/electronics/timing/ssadler/

TimingSystem.html

which was then used to generate this document.
-John Koster

7

http://ssadler.phy.bnl.gov/adler/phenix/timing/TimingSystem.html
http://www.phenix.bnl.gov/phenix/project_info/electronics/timing/ssadler/TimingSystem.html
http://www.phenix.bnl.gov/phenix/project_info/electronics/timing/ssadler/TimingSystem.html

	Generating raw mode bit data file
	How a GTM works
	Mode bit data section
	Mode bit command section

	GTM raw data file format
	MBParce details
	The vxWorks GTM software

	Transcriber's note

